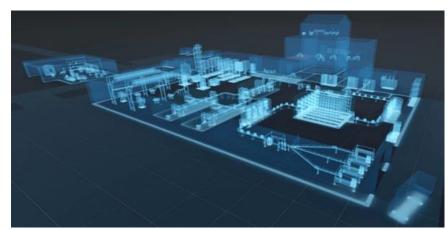
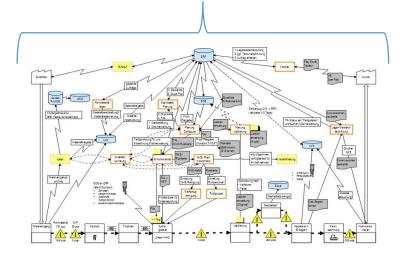
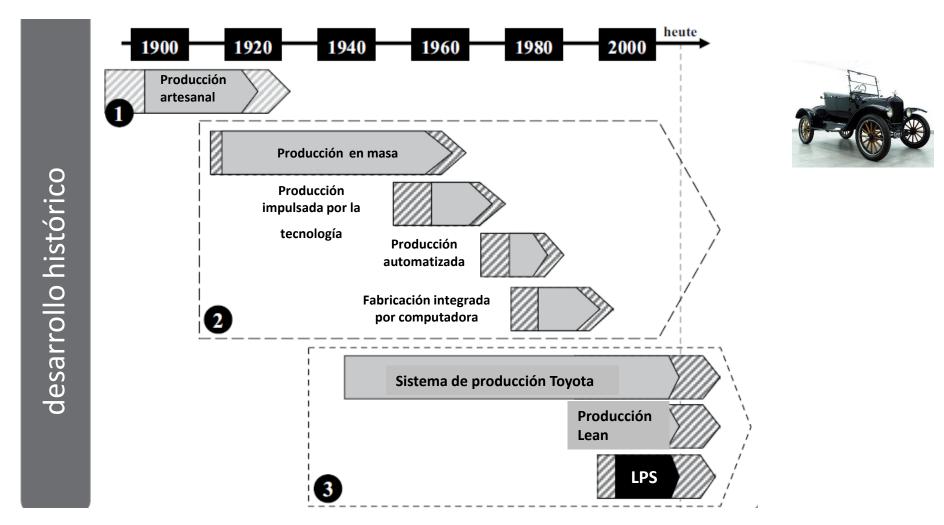

Tendencias de ingeniería


Primera capacitación en Bahía Blanca, Argentina 12-14 de noviembre de 2018

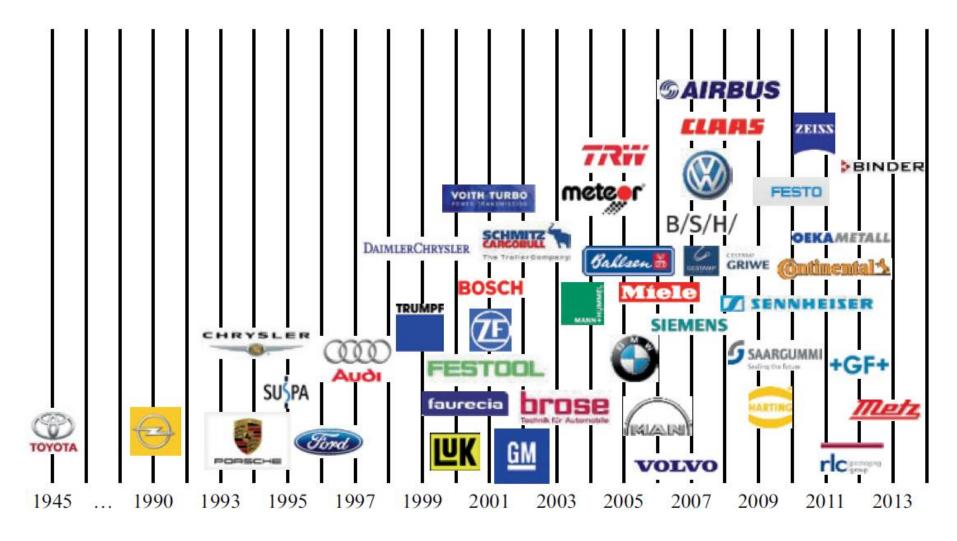


Del producto a la producción

Contenidos


Gestión de producción

Gestión de calidad y Gestión de innovación


Desarrollo histórico de los sistemas de producción

Introducción al LPS (Sistema de Producción Lean)

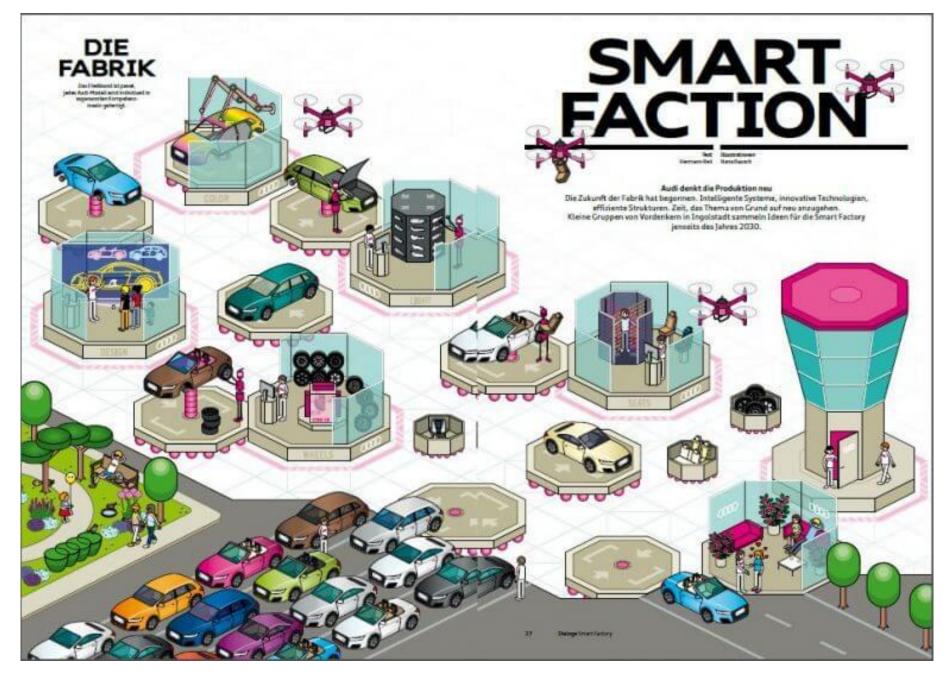
AUDI

Durante más de 100 años la línea de montaje en la industria automotriz marcó el paso. Sin embargo, el montaje modular permite ahora a las empresas manejar mejor la complejidad creciente y la diversidad de variantes, en forma más flexible y más eficiente.

- Islas de fabricación
- Justo a tiempo a través del sistema de transporte sin conductor (DTS, por sus siglas en inglés)
- Altamente flexible

Componente:

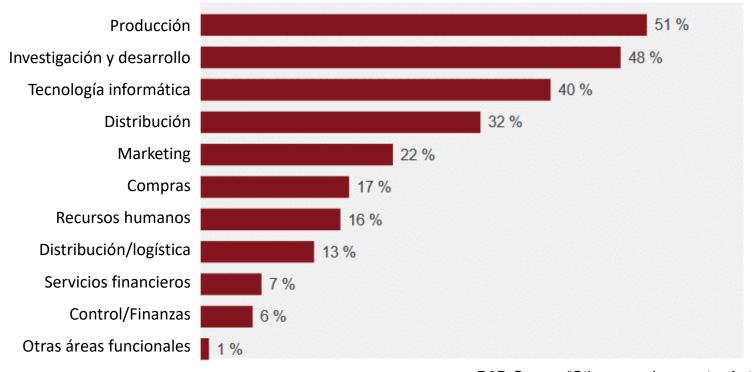
Ejemplo: aire acondicionado Hasta ahora: 102 variantes en 220 modelos.


Nuevo: 28 variantes

Construcción:

Ejemplo: arreglo de motor Hasta ahora: 309 posiciones

Nuevo: 36 posiciones



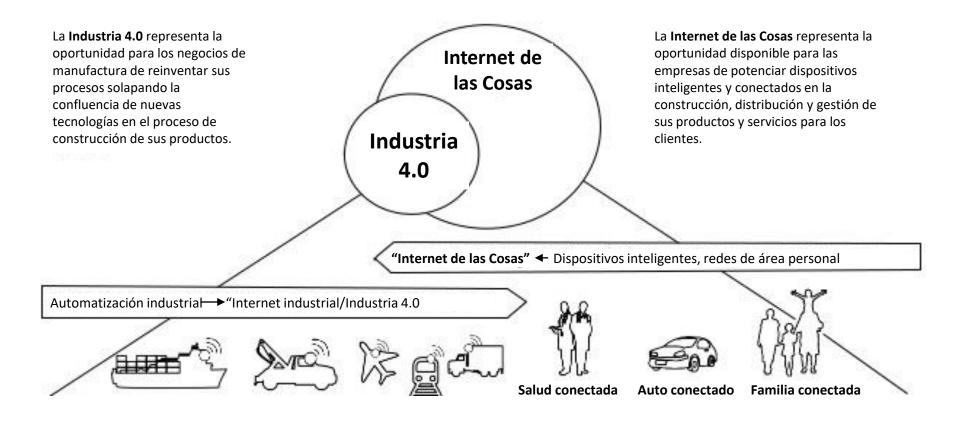
Barómetro de las tendencias automotrices

Se esperan lo cambios más marcados en los departamentos de producción, investigación y desarrollo y tecnología informática (IT).

Áreas funcionales con los mayores cambios a causa de nuevos modelos de negocios/digitalización

Trabajo en grupo

¿Cuáles son las principales tendencias de fabricación en su país?


10 minutos

Definición de IoT (internet de las cosas) e Industria 4.0

IoT e Industria 4.0

Source: https://www.slideshare.net/thomasgr/connecting-developers-with-things-developer-relations-for-internet-of-things

BMW

Objetivos:

- I&D para mejoras adicionales en la construcción liviana.
- Producción en masa: redes inteligentes, mejora de la calidad reduciendo costos.
- Apoyo de proyectos o nuevas estructuras de producción con enfoques de fábrica digital.

Áreas de actividad:

- Simulación en producción.
- Sistemas de asistencia en producción.
- Robótica y sistemas autónomos.
- Cadena de valor en red.
- Fábrica digital.
- Sistemas humanos-robot.
- Sistemas de asistencia móvil.
- Sostenibilidad.

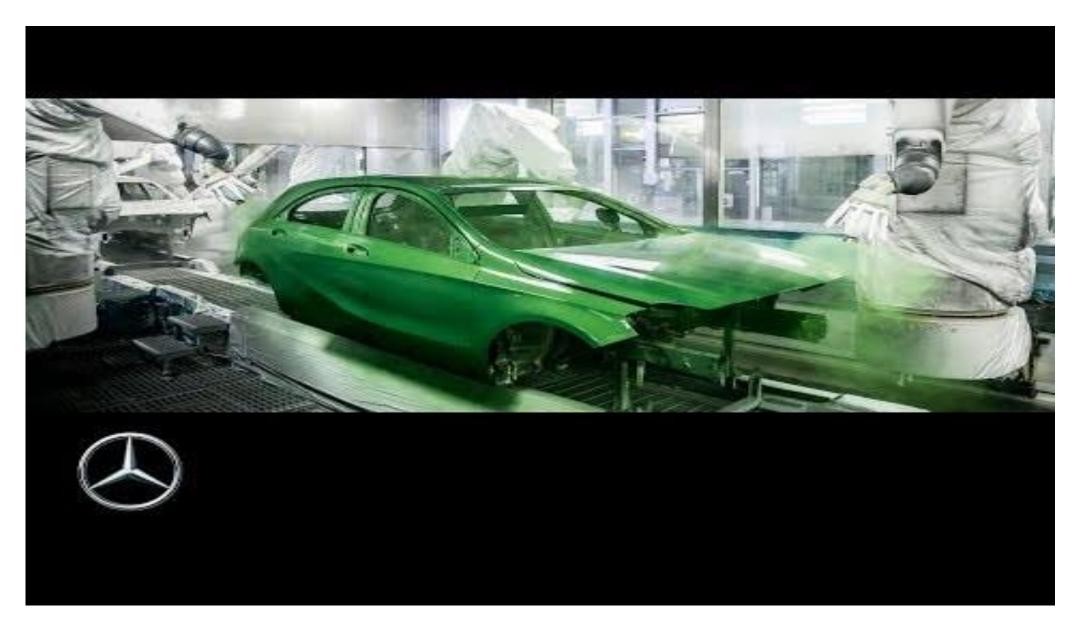
Fuente:

- Dunckern, C.: Industrie der Zukunft – Zukunft der Industrie, Fachtagung IG Metall (2014)

Michael Ebner, Industrie 4.0: Nachhaltige Produktion durch intelligentes Energie- Datenmanagement, Presse-Information, 11/2014.

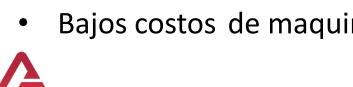
Daimler

Objetivos:


- Acortamiento de los tiempos de puesta en marcha a través de la seguridad digital.
- Integración horizontal y vertical.
- Tiempos de compras reducidos para instalaciones de producción.
- Optimización de producción y montaje.
- Mayor automatización a través de la interacción humano-robot.
- Flexibilización de la producción a través de la producción adaptable.
- Optimización global de procesos.

Áreas de actividad:

- Vida digital en el trabajo.
- Procesos de IT integrados (PLM, ERP, CAD, MES).
- Fábrica digital y puesta en servicio virtual.
- Fábrica versátil.
- Robots sensibles.


Alto nivel de actividad manual

Características:

- Pequeña cantidad de robots
- Actividades recurrentes para empleados
- Gran flexibilidad en producción
- Altos costos de personal y
- Bajos costos de maquinarias.

Tendencias:

- Robots industriales sensibles
- Sistemas de asistencia,
- Calidad en producción y
- Realidad aumentada

Alto nivel de automatización

Características:

- Altos costos de maquinaria
- Baja flexibilidad
- Alto grado de estandarización y
- Gran aplicación de robots

Tendencias:

- Mantenimiento predictivo
- Big Data
- Comunicación M2M y
- Cuestiones de sostenibilidad

Coincidencias

- Unidades de transporte autónomo.
- Fábrica digital (planificación y simulación).
- Datos inteligentes para calidad predictiva.
- Ciclo de vida de los datos.
- KPI a través de cuadro de mando móviles.
- Integración horizontal y vertical.

- OPC UA (como sinónimo de normas) para comunicación.
- Transparencia en producción con RFID.
- Seguridad de la nube e IT.

Tendencias en producción

Industria 4.0

Producción eficiente en relación con los recursos

Integración humana

Industria 4.0

Transparencia y controlabilidad de procesos, máquinas y plantas a través de la red inteligente, orientada a la digitalización y a la reorganización orientada a los valores de los procesos.

Fábrica inteligente

Gestión y análisis de datos

Identificación de componentes y seguimiento

Integración humana

Alentar la eficiencia y la ergonomía para el lugar de trabajo del futuro mediante el uso de métodos de implementación establecidos, estructuras organizacionales Lean y sistemas de asistencia móviles e intuitivos con IT.

Diseño del lugar de trabajo

Capacidad y planificación del orden

Organización del proceso

Asistente de producción

Producción eficiente en relación con los recursos

Creación de recursos energéticos y de valores eficientes respecto de los recursos a través de enfoques de planificación individual, control de procesos innovador y gestión integrada.

Eficiencia energética

Simulación de flujo de energía y de materiales

Fábricas eficientes respecto de la operación y recursos

Trabajo en grupo

¿Cómo preparar a los estudiantes para los entornos complejos y en cambio constante?

10 minutos

"La comprensión de las estrategias y de los métodos básicos de producción y de su influencia sobre los enfoques innovadores llevan a una rápida adaptación y a la transferencia a nuevas situaciones".

Materias del programa de HSD

Materias

https://michilot.com/wp-content/uploads/2018/05/mano-de-obra-presencial.jpg

- Planificación y control de producción.
- Métodos para la optimización de producción.
- Gestión de operaciones.
- Planificación de fábricas y gestión de calidad.

Planificación y control de producción

Cursos:

Clase de 2 horas por semana/capacitación práctica de 2 horas por semana.

Resultados de aprendizaje/Competencias

Los estudiantes están familiarizados con las tareas básicas de la gestión de producción y el uso del software PPS/ERP en operaciones industriales:

- Programación
- Planificación de cantidad
- Planificación de capacidad y del cronograma
- Control de producción

Formas de enseñanza

- Clase (a)
- Desarrollar las aplicaciones en la capacitación práctica en PPS / ERP EDP bajo la guía y procesamiento independiente de un orden simulado.

Planificación de fábricas y gestión de calidad

Cursos:

Clase: 2 horas por semana/ejercicio: 2 horas por semana/capacitación

práctica: 2 horas por semana.

Resultados de aprendizaje/Competencias

- Realizar tareas de planificación operativa más pequeñas sistemáticamente: analizar, diseñar, evaluar y llevar a cabo soluciones, mercado, derivación.
- Derivar, evaluar e implementar estrategias de mercado y estrategias de producción.
- Implementar tareas de montaje.
- Implementar filosofías Lean.
- Implementar optimizaciones en áreas de calidad.
- Evaluar y clasificar los desarrollos de mercado actuales.

Formas de enseñanza

- Clase (explicación introductoria de los hechos y métodos).
- Ejercicio (aplicación propia de los métodos de planificación y de control).
- Capacitación práctica: explicación introductoria de los hechos y de bloques de construcción, aplicación propia futura de la planificación. Herramienta de análisis, programación independiente.

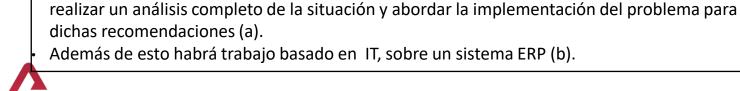
Métodos para la optimización de producción

Cursos: Clase: 2 horas por semana/ejercicio: 2 horas por semana/capacitación práctica: 1 hora por semana.

Resultados de aprendizaje/Competencias

- Explicar y evaluar los beneficios de los sistemas de producción globalmente estandarizados ("sistemas de producción holísticos").
- Evaluar y seleccionar métodos de optimización de la producción usados internacionalmente en relación con su capacidad operativa para la optimización de problemas en producción.
- Aplicar operativamente e implementar independientemente en el entorno industrial.
- Capacitación en métodos seleccionados para sus estudiantes y tener cualidades incorporadas como capacitador y moderador de grupos.
- Evaluar las estrategias de producción actuales (oportunidades y riesgos, forma organizacional) y proponer y seleccionarlas orientadas a la planificación de producción de fábrica.

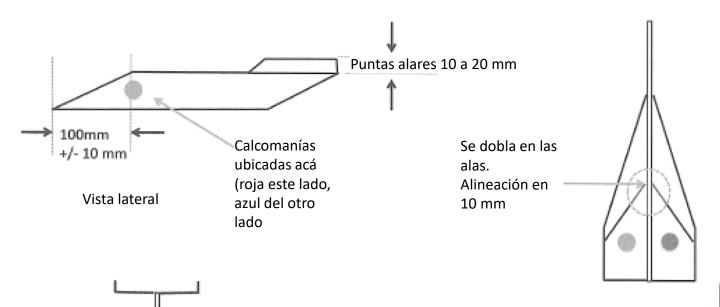
Formas de enseñanza


Aprendizaje sobre la base de problemas (PBL) con trabajo en grupo.

Gestión de operaciones.

solicitud inicial. Luego se abrirá el debate al resto de la clase. Como grupo, intentaremos

Cursos:	Plan de estudios	Temas	
Seminario 2 horas por semana/ Capacitación práctica 2 horas por			
		Introducción	
semana		Gestión de inventario	
Resultados de aprendizaje/Con	petencias	Pronóstico de la demanda	
•	conocimiento de trabajo fundamental sobre las econocerán que la gestión de operaciones es una	De MRP a ERP	
	ndo contabilidad, ingeniería industrial, gestión, ciencias	Programación a corto plazo	
de la administración y estadís	ica y el uso de herramientas de IT como los sistemas ERP.	Juego del avión (Diagramación de producción)	
 Los estudiantes podrán aplica 	términos y métodos fundamentales para la gestión de	Decisión de ubicación y diseño de red	
producción y procesos de servicio.		Gestión de la cadena de suministro	
•	icar, cuantificar y optimizar la planificación de producción	Juego del distribución de cerveza (Efecto de amplificación	
y los sistemas de programación de operaciones con énfasis en la Planificación de recursos de la empresa ERP. Formas de enseñanza		Inventario de la cadena de suministro	
		Gestión de la calidad y control de procesos estadisticos	
		Mantenimiento	
 En una sesión típica, se le pedirá a uno o más estudiantes que comiencen un debate abordando el caso o lectura. Usted no debería tener ninguna dificultad para manejar una 		Producción Lean y Sistema de producción Toyota (TPS)	
		Pasuman	

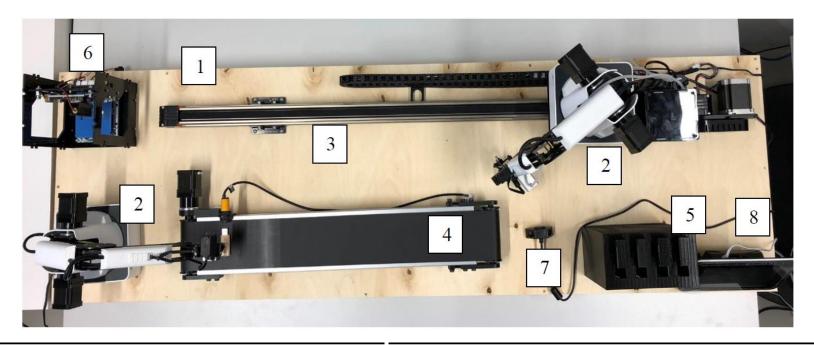

Resumen

Juego del avión

Vista del extremo

Diseñar la diagramación de producción para la producción de aviones de papel.

Vista superior



Métodos para la optimización de producción

- Prepare la sesión de capacitación dentro del grupo. El tiempo de trabajo es como mínimo el tiempo del evento.
- El disertante asume el rol de consultor y está disponible durante el período de la clase.
- Cada grupo tiene un líder de grupo: El líder le envía al disertante por correo detalles de los miembros de su grupo (nombre, n.° de mat).
- La asistencia a las clases de consulta es obligatoria. Acá el grupo informa sobre el estado de situación. (Se permiten 2x faltas).
- Cada grupo realizará su "capacitación del método" con todos los otros participantes en UN día de clase (fecha del examen). Las fechas del examen también son obligatorias.
- La participación estará documentada mediante firma. ¡Al faltar más de dos veces se pierde regularidad por no cumplimiento!. (No importa la razón).

MiniFab

Núme	ro Componente	Tarea	Número	Componente	Tarea
1	Placa base	Base	5	Sistema de almacenamiento	Suministro de materia prima
2	Robots	Piezas móviles	6	Máquina grabadora	Grabado de logo HSD
3	Riel deslizante	Extensión de rango	7	Puerto USB	Transmisión de datos
4	Sistema de cinta transportadora	Conectar estaciones de trabajo	8	Raspberry Pi	Unidad de control central

Testigo

Gestión de calidad y métodos y tendencias de innovación

29.07.2020

Contenidos

Gestión de producción

Gestión de calidad y Gestión de innovación

Dónde comenzar

6 Sigma

- 5 Capacidad
 - Reducción de la variación
 - Control en proceso
 - Implementación de la función de calidad

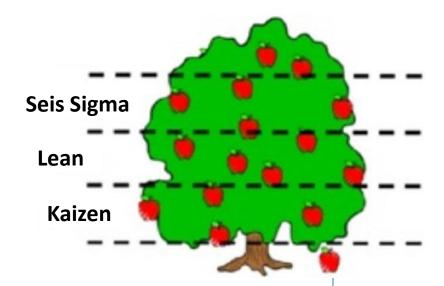
4 - Robustez

- Procesos robustos
- Diseño para Seis Sigma
 - Anormalidades visibles

Lean

3- Estabilidad

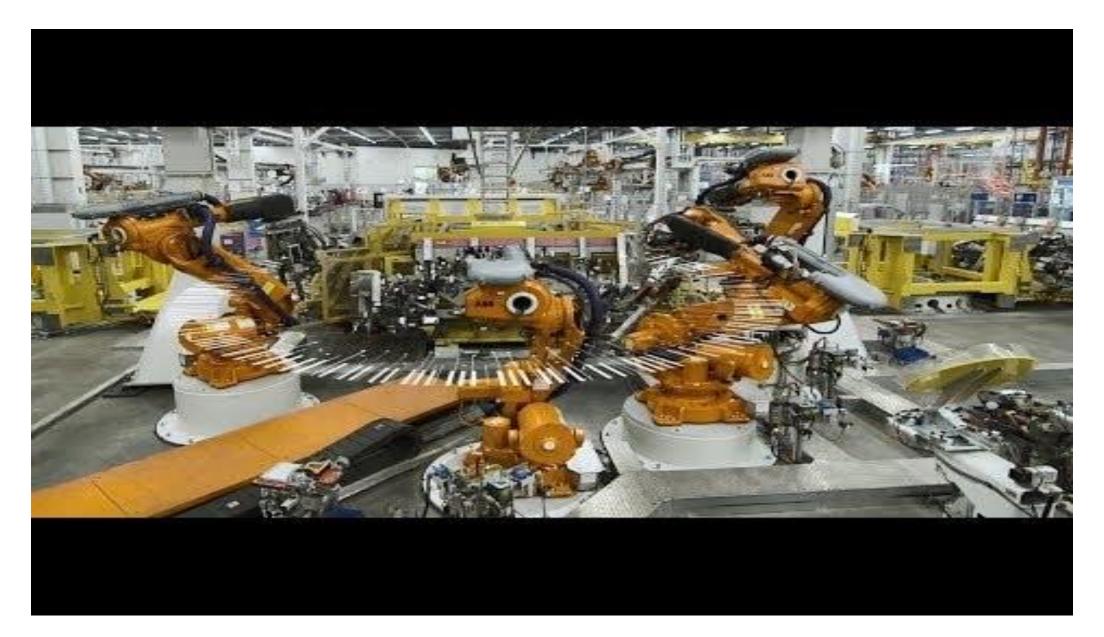
- Procesos estables
- Eliminación de residuos
- Fluir y atraer


Kaizen 2- Generalidades y percepción

- KPI de la gestión visual
- Control WIF
- Cultura de mejora continua

1 - Estructura

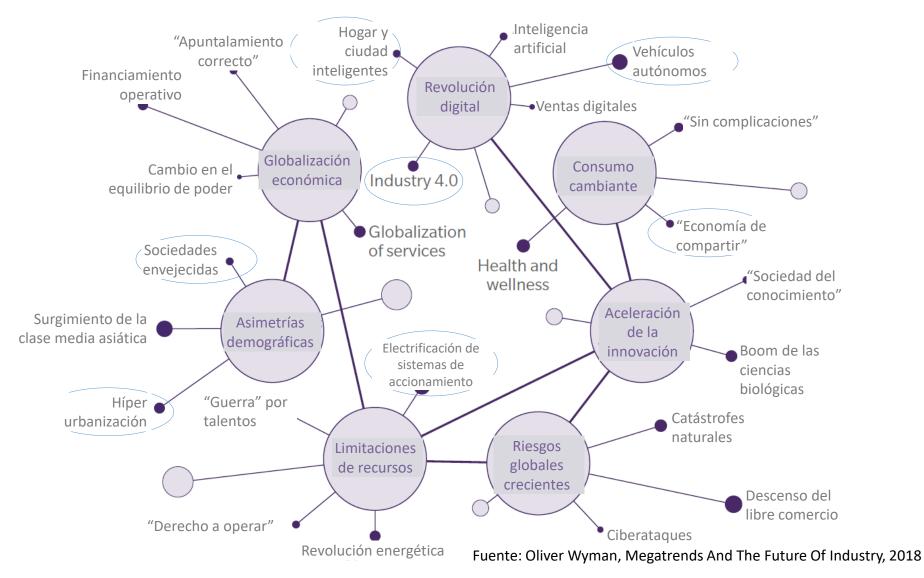
- Entorno de trabajo
- Procedimientos e instrucciones
- Anormalidades visibles


TRIZ (Teoría de Resolución de Problemas de

	•	without making this one worse	Weight of moving object	Weight of Stationary Object	Length of moving object	Length of Stationary object	Avea of moving object	Area of stationary object	Volume of moving object	Volume of stationary object	Speed	Force (Intensity)	Stress or pressure	Shape	Stability of the object's composition	Strength	Duration of action of a moving object	চ 🎚	ΙĒ	Illumination intensity	Use of energy by a moving object	Use of energy by a stationary object	Power	Loss of energy	Loss of substance	Loss of Information	Loss of time	Quantity of substance	Relability	Measurement accuracy	Manufacturing precision	Object-affected harmful factors	Object-generated harmful factors	Ease of manufacture	Convenience of Use	Ease of repair	Adaptability or versatility	Device complexity	Officulty of detecting and measuring	Extent of automation	Productivity
	39	Technical 🕰	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
	1	Weight of moving object		-	15.8 29.34	-	29 17 38 34	-	29 2 40 28	-	2 8 15 38	8 10 18 37	10 36 37 40	10 14 35 40	135 1939			-	6 29 4 38		35 12 34 31	-	1236 1831	6 2 34 19	535 331	10 24 35	10 35 20 28	3 26 18 31		28 27 35 26		22 21 18 27		27 28 1 36	353 224	2 27 28 11	295 158	26 30 36 34	28 29 26 32	26 35 18 19	35 3 24 37
	2	Weight of stationary object	-		-	10 1 29 35	-	35 30 13 2	-	535 142	-	8 10 19 35		13 10 29 14			-		28 19 32 22		-	18 19 28 1	15 19 18		58 1330	10 15 35	10 20 35 26	196 1826	10 28 8 3	18 26 28		2 19 22 37	35 22 1 39		613 132	2 27 28 11	1915 29	1 10 26 39	25 28 17 15	2 26 35	1 28 15 35
	3	Length of moving object	8 15 29 34	-		-	15 174	-	717 435	-	13.4 8	17 104	1.8 35	1 8 10 29	1 8 1534	835 2934	19	-	10 15 19	32	835 24	-	1 35	7 2 35 39	429 23 10	1.24	15.2 29	29 35	10 14 29 40		10 28 29 37	1 15 17 24	17 15	1 29 17	15 29 35 4	1 28 10	14 15 1 16		35 1 26 24		
	4	Length of stationary object		35 28 40 29			-	177 1040	-	358 214	-	28 10	1 14 35	13 14 15 7		15 14 28 26		140 35	3 35 39 18	3 25	-		12 8	6 28	10 28 24 35	24 26	30 29 14		15 29 28	32 283	232 10	1 18		15 17 27	2 25	3	1 35	1 26	26		30 14 7 26
, [5	Area of moving object	217 294	-	14 15 18 4	-		-	714 174		29 30 4 34	1930 352		534 294	11 2 13 39		63	-		15 32 19 13		-		15 17 30 26	10 35 2 39	30 26	26 4	29 30 6 13	29 9	26 28 32 3	2 32	22 33 28 1	17 2 18 39	13 1 26 24	15 17 13 16	15 13 10 1	15 30		236 26 18		
	6	Area of stationary object	-	30 2 14 18		26 7 9 39	-		-		-	1 18 35 36	10 15 36 37		2 38	40	-	2 10 19 30	35 39 38		-		17 32	17 7 30	10 14 18 39		10 35 4 18	2 18 40 4	32 35 40 4			27 2 39 35		40 16	164	16	15 16	1 18 36	2 35 30 18		10 15 17 7
? [7	Volume of moving object	2 26 29 40	-	1 7 4 35	-	17 417	-		-			635 3637	1 15 29 4	28 10 1 39			-	34 39 10 18		35	-			36 39 34 10		2 6 34 10	29 307	141 4011	26 28	25 28 2 16	22 21 27 35	172 40 1	29 1 40	15 13 30 12		15 29	26 1		35 34 1 16 24	
	8	Volume of stationary object	-	35 10 19 14		358 214	-		-		-	2 18 37	24 35	7235	34 28 35 40		-	35 34 38	3564		-		306		10 39 35 34		35 16 32 18	35 3	235 16		35 10 25	34 39 19 27		35		1		1 31	217 26		35 37 10 2
	9	Speed	8 28 13 38	-	13 148	-	29 30 34	-	729 34	-				35 15 18 34		8326 14	3 19 35 5	-	28 30 36 2	10 13 19	8 15 35 38	-			10 13 28 38										32 28 13 12		15 10 26		334 2716	10 18	
?	10	Force (Intensity)	8 1 37 18		17 19 9 36	78 10		1 18 36 37	15 9 12 37	236 1837				1035 4034		35 10 14 27			35 10 21	-	19 17 10	1 16 3637	19 35 18 37	14 15	835 405		10 37 36	14 29 18 36							1 28 3 25		15 17 18 20				3 28 35 37
	11	Stress or pressure	10 36 37 40		35 10 36		10 15 36 28			35 24	635 36	3635 21			35 33 2 40	9 18 3 40	193 27		35 39 19 2	-	14 24 10 37		10 35 14	236 25	1035 337		37 36 4	10 14 36	10 13 19 35		3 35		2 33 27 18	1 35 16	11	2	35	19 1 35	236 37	Ph 341	10 14 35 37
	12	Shape	8 10 29 40		2934 54	13 14 10 7			14.4 15.22		35 15 34 18					30 14 10 40	14 26 9 25		22 14 19 32	13 15 32	2634 14		462	14	35 29 3 5		14 10 34 17		10 40 16	28 32 1	32 30 40	22 1 2 35	351	1732 128	32 15 26	2 13 1	1 15 29	1629 128	15 13 39		17 26 34 10
	13	Stability of the object's composition	2135 239	140		37	211 13	39	1939	35 40	33 15 28 18	1035 2116	2.35 40	221 184			13 27 10 35		35 1 32	323 2715	13 19		32 35 27 31		2 14 30 40		35 27	35		13	18	30 18	35 40 27 39	35 19		1016	34.2		35 22 39 23	35	23 35 40 3
' [14	Strength	1 8 40 15		1 15 835		40 29			914 1715	26 14	10 18 3 14	103 1840	35 40	13 17 35		273 26		30 10 40	35 19	19 35 10	35	10 26 35 28	35	35 28 31 40		28 10	_	1113	3 27 16	3 27	371	_	1032	28 2	113	15 3 32	28	273 1540	15	29 35 10 14
;	15	Duration of action by moving object	195 3431	-	219 9	-	317 19	-	10 2 19 30	-	335 5	19 2 16		14 26 28 25	35	273 10			39		28 6 35 18		19 10 35 38		28 27 3 18	10	28 18		13	3	3 2/ 16 40	22 15 33 28	21 39 16 22	27 1 4	12 27	29 10 27	1 35 13	28 15	39.35	6 10	35 17 14 19
2	16 D	Duration of action by Stationary object		6 27 19 16	_	1 40 35	-		-	35 34 38	-				3935 323		-		19 18 36 40		-		16		27 16 18 38	10	10 16		640	24		171 4033	22	35 10	1	1	2		25.34 6.35	,	20 10 16 38
	17	Temperature	638	22 35 32	199	15 199	3 35 39 18	35 38	40 18			3 21		14 22 19 32	32	10 30 22 40	39	19 18 36 40		21 16	_		17 25		3931		21 18	3 17 30 39		24	24	22 33 35 2	22 35 2 24	26 27	26 27	16	2 18 27	16	35 31	1916	15 28 35
	18	Illumination Intensity	19 1 32	32	19 32 16		19 32 26		2 13 10		13 19 10	26 196		32 30	32.3 27	35 19	2 19 6		32 35 19		32 1 19	3235 115	32	1316 1 6	131	1 6	19 1 26 17	1 19		11 15 32	3 32	15 19		1935 2826	28 26 19	15 17 13 16		632 13	32 15	10	2.25 16
3	19	Use of energy by moving object	12 18 28 31	-	12 28	-	15 19 25	-	35 13 18	-	8 15 35	16 26 21 2			19 13 17 24			-	19 24 3 14	215 19		-		12 22 15 24	35 24 18 5			34 23 16 18				135 627	2 35 6	28 26 30			15 17 13 16		35 38	32 2	12 28 35
. [The of enemy built dispose whiled		19 9											274					192					28 27			3 35	10 36			102	19 22						19 35		1.0

40 Inventive Principles

1	Segmentation
2	Taking Out
3	Local Quality
4	Asymmetry
5	Merging
6	Universality
7	Nested Doll
8	Anti-Weight
9	Prior Counteraction
10	Prior Action
11	Cushion in Advance
12	Equipotentiality
13	The Other Way Round
14	Spheroidality - Curvature
15	Dynamics
16	Partial or Excessive Action
17	Another Dimension
18	Mechanical Vibration
19	Periodic Action


"La industria automotriz cambiará más en los próximos cinco a diez años que en los últimos 50".

CEO de General Motors, Mary Barra en el Foro Económico Mundial 2016

Megatendencias en innovación

Tendencias automotrices hasta el 2030

Siete tendencias fundamentales impulsan la industria automotriz, habilitadas y aceleradas por la digitalización, IA y aprendizaje automático

capacidad de datos predictivos y adaptativos

Fuente: Oliver Wyman, Automotive Manager, 2018

Interfaz hombre-máquina

Pantalla táctil – HMI Tesla

Collage de las HMI disponibles en la actualidad.

Trabajo en grupo

¿Cuáles son las nuevas tendencias en la estructura de clientes y en los canales de distribución?



Cambio de la Estructura de Cliente

Fuente: Martyn Briggs, Frost & Sullivan, Future of Mobility: Slide 4 https://ww2.frost.com/files/7114/3620/7732/FS_Future_of_Mobility_MBv5.pdf

Nuevos canales de distribución

Independiente del auto

Movilidad integrada: planificación de viaje, reserva y pago

Planificadores de ciudades y estilo de vida

Creación y almacenamiento de energía

Servicios de automóviles

Compartir autos

Estacionamiento y carga

Compartir viaje

Taxi y limusina Conducción automatizada

Propiedad de automóviles

Finanzas

Mantenimiento

Servicios conectados

Fuente: Martyn Briggs, Frost & Sullivan, Future of Mobility: Slide 9 https://ww2.frost.com/files/7114/3620/7732/FS_Future_of_Mobility_MBv5.pdf

Evolución y expansión de servicios OEM

Materias del programa de HSD

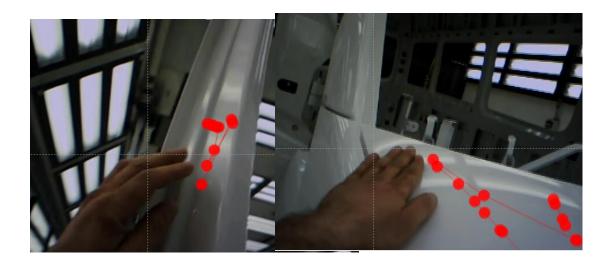
Materias

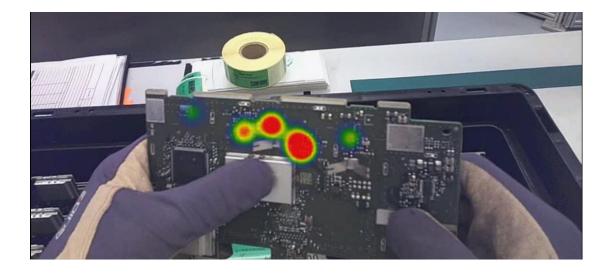
- Planificación de fábricas y gestión de calidad.
- Gestión de innovación y tecnología.
- Métodos de gestión de calidad.
- Gestión de productos y del cambio.

Cursos de certificación

- Seis Sigma: Cinturón amarillo
- Seis Sigma: Cinturón verde

 QM Automotive por "AQUA Knowledge Alliance" para la capacitación de calidad y excelencia en automotores


Trabajo práctico sobre innovación


Rediseñar un objeto cotidiano

- Hallazgo del desorden.
- Detección del problema/definición.
- Replanteo del problema (según lo requieran las circunstancias).
- Producción de la idea.
- Desarrollo de la idea.
- Evaluación.
- Etapa de adopción o plan de acción Obstáculos posibles

Seguimiento visual

¿Qué tendencia es la más importante para el sector automotriz en el futuro?

Innovación en HSD

Gracias por su atención

